Police DAV Public School, Ludhiana Class –XII/ Mathematics

Q.1 If A is square matrix of order n x n then adj (adj A) is equal to (b) $|A|^{n-1}A$ (c) $|A|^{n-2}A$ (d) $|A|^{n-3}A$ (a) $|A|^n A$ If A is an orthogonal matrix, then A^{-1} equals (a) A (b) A^{T} Q.2 (c) A^2 (d) I $\begin{array}{ccc} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{array} , \text{ then } \lim_{n \to \infty} \quad \underline{A}^n \text{ is } \\ n \to \infty & n \end{array}$ If A Q.3 $(c) \left[\begin{array}{c} 0 & 1 \\ 0 & -1 \end{array} \right]$ (b) Identity matrix $(d) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (a) Zero matrix The value of a 3 x 3 determinant is 11, then the value of determinant formed by its cofactors will be Q.4 (a) 11 (b) 121 (c) 1331 (d) 14641 $\begin{array}{c|cccc} x & 1 \\ x^2 & 2x \end{array} , \text{ then lim} \\ x \to 0 \end{array} \left(\begin{array}{c} \underline{f'(x)} \\ x \end{array} \right)$ Q.5 f(x) =Cos x 2sinx tan x 1 х (a) 2 (b) -2 (c) 1 (d) -1 If $a^2+b^2+c^2+=-2$ and Q.6 $1 + a^2 x$ $(1 + a^2) x$ $\begin{array}{ccc} (1+b^2)x & (1+C^2) x \\ 1+b^2 x & (1+c^2)x \\ (1+b^2)x & 1+c^2 x \end{array}$ f(x)= $(1+a^2)x$ Then f(x) is a polynomial of degree (a) 0 (b) (c) 2 (d) 3 1 Let f be a function satisfying $f(x+y) = f(x) f(y) \forall x \in R$. If f(1) = 3 then $\sum f(r)$ is equal to Q.7 r =1 3^{n+1} -3 $\underline{3}(3^{n}+1)$ (b) $\frac{3}{2}$ n(n+1) (c) (a) $\underline{3}(3^{n}-1)$ (d) Q.8 $(1+\sin \Pi x)^{t}$ - 1, then range of f (x) is $f(x) = \lim_{x \to \infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty$ $(1+\sin \Pi x)^{t}+1$ t→∞ (-1,1)(b) (0,1)(c) (-1, 0)(a) (d) (-1,0,1)If $f(x) = \frac{4^x}{4^x+2}$, then $f\left(\frac{1}{1997}\right) + f\left(\frac{2}{1997}\right) + f\left(\frac{3}{1997}\right) + \dots + f\left(\frac{1996}{1997}\right)$ is equal to Q.9 1997 998 0 997 (b) (c) (d) (a)

Q.10	The set of points of discontinuity of $f(x) = \lim_{x \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}$ is							
	(a) $\{1\}$	(b)	{-1}	(c)	{-1,1}	(d)	{0}	
Q.11	Let f be a differentiable function such that the equal to				$f'(\underline{x}) = \frac{f(\underline{x})}{f(\underline{y})} \text{ for all } x, y \in \mathbb{R}, y \notin 0. \text{ If } f'(1)=2, \text{ then } f'(\underline{x}) \text{ is }$			
	(a) 2f(x) (b)	f <u>(x)</u>	(c)	2xf(x)	(d)	$\frac{2f(x)}{x}$	
Q.12	$\frac{d}{dx}\cos(\sin x^2)$, at $x = \sqrt{\sqrt{\Pi/2}}$ is							
	dx (a) -1	(b)	1	(c)	2	(d)	0	
Q.13	$y \cos x + x \cos y = \Pi$, then y "(0) is							
	(a) 1	(b)	II	(c)	0	(d)	-II	
Q.14	f(x) = (1+x)) ⁿ , then value o	$\mathbf{ff}(\mathbf{x}) = \mathbf{f}(0)$	$+\frac{f^{II}(0)}{2I}$ +	$-\frac{f^{III}(0)}{3!}+$	$+\frac{f^{n}(0)}{n!}$) is	
	(a) n	(b)	2^n	(c)	2^{n-1}	(d)	2 ⁿ⁻²	
Q.15	If $f(x) = x + \tan x$, f is inverse of g, then g (x) is equal to							
	(a) 1 + (g(x))	$(-x)^2$	(1	b)1-	$\frac{1}{\left(g(x)-x\right)^2}$			
	$(c) \frac{1}{2 + (g(x))}$	$(-x)^2$	(1	b)2-	$\frac{1}{\left(g(x)-x\right)^2}$			
Q.16	Range of $f(x) = \sin^{-1} x + \tan^{-1} x + \sec^{-1} x$ is							
	(a) $\left(\frac{\Pi}{4}\right)$	$\left(\frac{3\Pi}{4}\right)$	(1	b) $\left(\frac{\Pi}{4}\right)$	$\left(\frac{3\Pi}{4}\right)$			
	(c) $\left(\frac{\Pi}{4}\right)$	$\left(\frac{3\Pi}{4}\right)$	(6	d) $\left(\frac{\Pi}{4}\right)$	$\left(\frac{3\Pi}{4}\right)$			
Q.17	Q.17 If $x^2+y^2+z^2=r^2$, the tan ⁻¹ (<u>xy</u>) + tan ⁻¹ (<u>yz</u>) + tan ⁻¹ (<u>zx</u>) is							
	(a) <u>∏</u>	(b)	г х <u>П</u> 2	r (c)	yr 0	(d)	<u>-Π</u> 2	
Q.18	Sum of series $\operatorname{Cot}^{-1}(2) + \operatorname{Cot}^{-1}(8) + \operatorname{Cot}^{-1}(18) + \operatorname{Cot}^{-1}(32) \dots$ upto ∞ is equal to							
	(a) <u>Π</u>	(b)	<u>П</u> 2	(c)	<u>Π</u> 4	(d)	0	

Police DAV Public School, Ludhiana Class –XII/Mathematics

- Q.1 Consider $f: R_+ \rightarrow \{-9, \infty\}$ given by f(x) = 5x2 + 6x 9. Prove that f is invertible with $f^{-1}(y) = \{\frac{\sqrt{54+5y-3}}{5}\}$
- Q.2 If $f: N \rightarrow N$ is defined by

 $f(n) = \frac{n+1}{2}, \text{ if } n \text{ is odd}$ $f(n) = \frac{n}{2}, \text{ if } n \text{ is even} \quad \text{for all } n \in \mathbb{N}$

Find whether the function f is bijective.

Q.3 Express the following matrix as a sum of a symmetric and a skew-symetric matrices and verify your result.

Q.4 Find inverse using elementary transformation.

$$\left(\begin{array}{rrr} -1 & 3 & 0 \\ 0 & -2 & 1 \end{array}\right)$$

Q.5 Using properties of determinants, prove that

$$\begin{bmatrix} x^{2}+1 & xy & xz \\ xy & y^{2}+1 & yz \\ xz & yz & z^{2}+1 \end{bmatrix} = 1 + x^{2} + y^{2} + z^{2}$$

Q.6 If A =
$$\begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{pmatrix}$$
 and B = $\begin{pmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{pmatrix}$

Find AB and hence solve system of equations x - 2y = 10, 2x + y + 3z = 8, -2y + z = 7.

Q.7 If A =
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
 and B = $\begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}$

Then find AB. Use this to solve this to system of equations: x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7.

Q.8
$$f(x) = \begin{vmatrix} \frac{1-\cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16} - \sqrt{x} - 4} \\ and f \text{ is continuous at } x = 0, \text{ then find the value of a.} \end{vmatrix}$$

Q.9 Find the value of k, for which

$$\begin{aligned}
\frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} & \text{if } -1 \le x < 0 \\
\frac{2x+1}{x-1} & \text{if } 0 \le x < 1
\end{aligned}$$
is continuous at x = 0.
Q.10 If $e^x + e^z = e^{x+y}$, prove that $\frac{dy}{dx} + e^{yx} = 0$
Q.11 Differentiate $\tan^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right)$ w.r.t $\cos^{-1}(2x \sqrt{1 - x^2})$, when $x \ne 0$
Q.12 Differentiate the following with respect to x
 $\sin^{-1}\left(\frac{2^{x+1} \cdot 3^x}{1 + (36)^x}\right)$
Q.13 If $(\cos x)^y = (\cos y)^x$, the find $\frac{dy}{dx}$
Q.14 If $\sin y = x \sin (a+y)$, then prove that
 $\frac{dy}{dx} = \frac{\sin^2 (a+y)}{\sin a}$
Q.15 If $(\tan^{-1}x)^y + y^{\cos x} = 1$, then find dy/dx .
Q.16 Find the intervals in which the function given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is
(i) increasing (ii) decreasing
Q.17 Find the point on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts on the axes.
Q.18 Find the equations of tangents to the curve $3x^2 - y^2 = 8$, which passes through the point $\left(\frac{4}{3}, 0\right)$
Q.19 Show that to f all the rectangles of given area, the square has the smallest perimeter.
Q.20 Show that of all the rectangles of given area, the square has the smallest perimeter.
Q.21 AB is diameter of a circle and C is any point on the circle. Show that the area of AABC is maximum when it is isosceles.